
DUST STORM, SOUTH AUSTRALIA, ISTOCK

CHAPTER FIVE 

EVALUATION OF CLIMATE MODELS



5	 CHAPTER 5 EVALUATION OF CLIMATE MODELS

5.1	 INTRODUCTION

In this Chapter climate models are evaluated by using measures of agreement between model 
simulations and observations of the present climate of the Australian region. The results of this model 
evaluation contribute to our assessment of confidence in model-simulated future climate changes 
(see Section 6.4) and also to the assessment of the adequacy of any model, or models in general, for 
particular applications. Recent IPCC Assessment Reports also use model evaluation to guide confidence 
in projections of future climate (IPCC, 2007; 2013).  

The ability of individual CMIP5 models to simulate the 
Australian climate can vary depending on which aspect of 
a model simulation is considered. There is a wide range of 
climate features that have been included in this evaluation 
(see also Section 4.1.2 for details on the processes and 
features) in order to capture the complexity of the climate 
system as well as satisfy the interests of stakeholders. While 
this makes it difficult to identify a group of best performing 
models, it is possible to identify a small subset of models 
that perform consistently poorly across many aspects of the 
climate, or that perform poorly on critical aspects of the 
climate. Such information on poorly performing individual 
models is relevant when users are choosing a subset of 
models for application in impact assessment (e.g. through 
the Climate Futures approach – see Chapter 9). Similarly, 
the results from the model evaluation are very important 
when choosing host models for dynamical downscaling (see 
Section 6.3.3).

At the core of every model evaluation is a set of high 
quality observations to which model simulations can be 
compared. The high quality data set from the Australian 
Water Availability Project (AWAP, Jones et al. 2009a, 
Raupach et al. 2009, 2012) is used for the evaluation of 
rainfall and temperature over the Australian continent. 
These provide an excellent indicator of mean climate across 
Australia. For the assessment of trends in temperature a 
recently updated high-quality reference station data set is 
used (ACORN-SAT – Trewin, 2013). For several climate fields 
(including rainfall and temperature) there are multiple 
global data sets available, which allows for an extension of 
the evaluation over a wider region including ocean regions 
surrounding Australia, and an estimate of the uncertainty in 
observations when multiple data sets are used for the same 
climate field. The various observational datasets used in this 
chapter are described in Table 5.2.1 and the global climate 
models (from CMIP3 and CMIP5) are described in Table 3.3.1, 
including the model labels used throughout this Report.

Features of global climate models, such as resolution and 
representation of physical processes, and details of the 
CMIP5 suite of experiments are discussed in Chapter 3. 

Most analysis in this chapter is carried out with respect 
to the historical experiments described in Section 3.3.1. 
The performance of global climate models with respect 

to climatological characteristics, features and processes 
is evaluated in Section 5.2. The simulation of observed 
regional climate tends is evaluated in Section 5.3. The 
simulation of climatic extremes is evaluated in Section 5.4 
and downscaling simulations are discussed in Section 5.5, 
before we conclude in Section 5.6.

5.2	 EVALUATION BASED ON 
CLIMATOLOGICAL CHARACTERISTICS

Global climate models are designed to simulate large-scale 
processes well. On a smaller regional scale, the spatial 
and temporal details of these processes are simulated 
with much more varying capacity. On even smaller scales, 
processes might not be directly simulated by global climate 
models at all (i.e. tropical cyclones).

Climate model resolution will give a rough indication of 
the spatial extent as to what of features and processes 
these models may simulate realistically. Table 3.3.1 shows 
the CMIP5 model ensemble and the resolution of both the 
atmospheric and ocean components of the models. CMIP5 is 
overall an improved set of global climate models compared 
to CMIP3 in terms of model formulation. The improvements 
arise from the increase in horizontal and vertical resolution; 
an improved representation of processes within the climate 
system (i.e. aerosol-cloud interactions, and the carbon cycle 
in the subset that are Earth-System-Models, ESMs) and also 
the availability of a larger number of ensemble members 
improves statistics overall (Chapter 9 in IPCC, 2013).

On a continental and global scale, this has also lead to 
an improved ability to simulate historical climate. Some 
examples of this ability are reported by IPCC (2013) and 
include the representation of:

•	 Global mean surface temperature, including trends over 
the recent decades

•	 Long-term global mean large-scale rainfall patterns (but 
less well than temperature)

•	 Regional mean surface temperature (sub-continental 
scales)

•	 Annual cycle of Arctic sea ice extent (and recent trends)

•	 Trends in ocean heat content
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•	 ENSO simulation

•	 Extreme events, especially temperature related ones

•	 Recent ozone trends

Beside these improvements, certain areas have not 
improved since the previous IPCC Assessment in 2007. This 
includes important systematic errors and biases such as 
the “cold tongue” bias (e.g. the sea surface temperature 
difference between East and West equatorial Pacific are 
too large in models, leading to a cold bias in the Western 
Pacific), problems in simulating the diurnal cycle of rainfall, 
the Madden-Julian Oscillation, and more. In many cases, 
there is a large inter-model spread leading to enhanced 
uncertainty, however amongst the models that do not 
include carbon cycle these are reduced compared to CMIP3  
(IPCC, 2013).

Apart from spatial resolution, models also employ different 
physical schemes representing atmospheric and oceanic 

processes (such as clouds and convection schemes). One of 
the main aims of model evaluation is to assess the skill of 
these models through standardised inter-comparisons. The 
CMIP5 experiments allow for such a comparison. Following 
is an overview of an assessment for the Australian region.

5.2.1	 ASSESSMENT OF HISTORICAL MEAN 
CLIMATOLOGIES: TEMPERATURE, RAINFALL AND 
MEAN SEA LEVEL PRESSURE

Figures 5.2.1 and 5.2.2 show a comparison of annual and 
seasonal climatologies (long-term averages) of temperature 
and rainfall for Australia. The left column in both figures 
shows the reference observational data set (AWAP, 
Jones et al. 2009a, Raupach et al. 2009; 2012) while the 
middle column shows an average of a selection of other 
observational data sets and reanalyses (see Table 5.2.1 for an 
overview of these) and the right column displays the CMIP5 
ensemble mean.

FIGURE 5.2.1: CLIMATOLOGICAL MEAN SURFACE AIR TEMPERATURE FROM AWAP (A, D, G, THE REFERENCE DATA SET), THE AVERAGE 
OF A SELECTION OF OTHER OBSERVATIONAL DATA SETS (B, E, H, SEE TABLE 5.2.1) AND THE CMIP5 MEAN MODEL (C, F, I) FOR 
ANNUAL (TOP ROW), SUMMER (DEC-FEB, MIDDLE ROW) AND WINTER (JUN-AUG, BOTTOM ROW) SURFACE AIR TEMPERATURE. THE 
AVERAGING PERIOD IS 1986–2005 AND THE UNITS ARE DEGREES CELSIUS (°C). THE CONTOURS HIGHLIGHT THE 9, 15, 21, 27 AND 33 °C 
THRESHOLDS FOR BETTER COMPARISON. THE NUMBER IN THE TOP RIGHT CORNER INDICATES THE SPATIAL CORRELATION BETWEEN 
THE CORRESPONDING DATA AND AWAP. THE SPREAD IN THE DATA SETS IS INDICATED BY THE BOX-WHISKER TO THE RIGHT OF EACH 
SUBPLOT: EACH SHOWS THE AUSTRALIA-AVERAGED SURFACE AIR TEMPERATURE WHERE THE GREY BOX REFERS TO THE MIDDLE  
50 % OF THE DATA AND THE WHISKERS SHOW THE SPREAD FROM MINIMUM TO MAXIMUM. THE THICK BLACK LINE IS THE MEDIAN 
OF THE UNDERLYING DATA AND THE RED LINE IS AWAP.
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TABLE 5.2.1:  LIST OF GLOBAL GRIDDED OBSERVATIONAL (BLUE) AND REANALYSIS DATA SETS (GREEN), THEIR CLIMATE FIELDS USED, 
TIME COVERAGE, ORIGIN AND REFERENCE. THE AWAP AND ACORN-SAT REFERENCE DATA SETS FOR SURFACE AIR TEMPERATURE 
AND RAINFALL OVER AUSTRALIA ARE SHOWN IN ORANGE. THE ABBREVIATION PR REFERS TO PRECIPITATION; TAS: SURFACE AIR 
TEMPERATURE; MSLP: MEAN SEA LEVEL PRESSURE.

GRIDDED DATA SET

NAME FIELDS PERIOD ORIGIN REFERENCES

AWAP PR 1900-2012 Australian Water Availability Project, 
Bureau of Meteorology and CSIRO

Jones et al. 2009a; Raupach et al. 2009 
and 2012

ACORN-SAT TAS 1910-2012 Australian Climate Observations 
Reference Network – Surface Air 
Temperature, Bureau of Meteorology

Trewin 2013

CMPA PR 1979-2008 Climate Prediction Centre Merged 
Analysis of Precipitation

Xie & Arkin, 1997

GPCC PR 1901-2010 Global Precipitation Climatology Centre 
(GPCC)

Rudolf et al. 2005; Beck et al. 2005

GPCP PR 1979-2008 Global Precipitation Climatology Project 
2

Huffman et al. 2009; Adler et al. 2003

CRU TAS 1901-2006 Climate Research Unit temperature 
database

Harris et al. 2013

GISS TAS 1850-2006 NASA Goddard Institute for Space 
Sciences (GISS) Surface Temperature 
Analysis

GISTEMP; Hansen et al. 2010

HADCRU TAS, PR 1901-2008 Met Office Hadley Centre and Climate 
Research Unit

HadCRUT3; Brohan et al. 2006

COREv2 PR, TAS, 
MSLP

1958-2006 CLIVAR Working Group on Ocean Model 
Development (WGOMD) Coordinated

Large & Yeager, 2009 & 2004

HOAPS PR, FLUXES 1987-2005 Hamburg Ocean Atmosphere 
parameters and fluxes satellite

Fennig et al., 2012; Andersson et al. 
2010

HadISST SST 1870-2010 Hadley Centre Sea Ice and Sea Surface 
Temperature dataset

HadISST2; Rayner et al. 2003

HadSLP2 MSLP 1850-2004 Hadley Centre Sea Level Pressure dataset Allan and Ansell 2006

CFSR PR, WINDS, 
MSLP, TAS

1979-2009 NCEP Climate Forecast System Reanalysis Saha et al. 2010

Merra PR, WINDS, 
MSLP, TAS

1979-2011 Modern Era Retrospective-analysis for 
Research and Applications

Rienecker et al. 2011

ERA40 PR, WINDS, 
MSLP, TAS

1958-2002 European 40-year reanalysis Uppala et al. 2005

ERA_INT PR, WINDS, 
MSLP, TAS

1979-2011 ERA-interim Dee et al. 2011

NCEP PR, WINDS, 
MSLP, TAS

1948-2011 NCEP/NCAR reanalysis 1 Kalnay et al. 1996

NCEP2 PR, WINDS, 
MSLP, TAS

1979-2011 NCEP/DOE reanalysis 2 Kanamitsu et al. 2002

JRA25anl PR, WINDS, 
MSLP, TAS

1979-2010 Japanese 25-year reanalysis Onogi et al. 2007

 

On average, the CMIP5 models capture the climatological 
temperature distribution across the continent very well. The 
north-south gradient in temperature is correctly simulated 
as well as the coastal versus inland differences during 
summer (middle row in Figure 5.2.1) although the ensemble 
mean model climate is cooler than AWAP across northern 
parts over Western Australia. During winter (Jun-Aug) the 
model ensemble mean model is slightly too warm over 

northern Australia as well as coastal regions in the south-
east and Tasmania. Pattern correlations are generally very 
high for the mean model distribution of temperature.

There is a substantial spread in the Australia-averaged 
temperature amongst the CMIP5 models, as indicated by 
the spread in the box-whiskers in Figure 5.2.1. While 50 per 
cent of the models are within ±1 °C of the AWAP reference 
data, some of the models are several degrees warmer or 
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colder. The box-whiskers belonging to the middle column 
in Figure 5.2.1 additionally indicate that there is some 
discrepancy amongst the other observational data sets 
and reanalysis data sets with respect to temperature across 
Australia. However, this discrepancy is generally less than 
half of the spread seen in the CMIP5 models.

Some of the model differences in temperature are driven by 
their differences in the simulation of the hydrological cycle. 
Mean rainfall differences are shown in Figure 5.2.2. There 
is a general tendency for the models to simulate too much 
rainfall across north-western Australia and reaching too far 
into the interior of the continent (summer and annual case). 
North-eastern regions show somewhat less summer rainfall 
in the models compared to AWAP. 
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The winter rainfall regime (across southern coastal 
regions of Australia) on the other hand is generally too 
dry as simulated by the climate models, especially in 
Tasmania. This could be caused by insufficient global model 
resolution of two kinds: (a) some model resolutions are  
too coarse to simulate  the correct land-sea contrast over 
Tasmania; (b) even if global models have information over 
Tasmania it is usually not enough to correctly simulate the 
topographically driven high rainfall regimes particularly 
over western regions of Tasmania. Therefore the pattern 
correlations are lower for rainfall compared to temperature 
and the model spread for summer rainfall is very large. 

FIGURE 5.2.2:  CLIMATOLOGICAL MEAN RAINFALL FROM AWAP (A, D, G, THE REFERENCE DATA SET), THE AVERAGE OF A SELECTION 
OF OTHER OBSERVATIONAL DATA SETS (B, E, H, SEE TABLE 5.2.1) AND THE CMIP5 MEAN MODEL (C, F, I) FOR ANNUAL (TOP ROW), 
SUMMER (DEC-FEB, MIDDLE ROW) AND WINTER (JUN-AUG, BOTTOM ROW) RAINFALL. THE AVERAGING PERIOD IS 1986-2005 AND 
THE UNITS ARE MM PER DAY. THE CONTOURS HIGHLIGHT THE 1, 3, 6, AND 9 MM/DAY THRESHOLDS. THE NUMBER IN THE TOP RIGHT 
CORNER INDICATES THE SPATIAL CORRELATION BETWEEN THE CORRESPONDING DATA AND AWAP. THE SPREAD IN THE DATA SETS IS 
INDICATED BY THE BOX-WHISKER TO THE RIGHT OF EACH SUBPLOT: EACH SHOWS THE AUSTRALIA-AVERAGED RAINFALL WHERE THE 
GREY BOX REFERS TO THE MIDDLE 50 % OF THE DATA AND THE WHISKERS SHOW THE SPREAD FROM MINIMUM TO MAXIMUM (FOR 
CMIP5 DATA ONLY). THE THICK BLACK LINE IS THE MEDIAN OF THE UNDERLYING DATA AND THE RED LINE IS AWAP.
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FIGURE 5.2.3: CLUSTER AVERAGED MEAN 
SURFACE AIR TEMPERATURE (UNITS: °C) FOR 
SUMMER (DEC-FEB, TOP) AND WINTER (JUN-
AUG, BOTTOM) FROM ALL CMIP5 MODELS 
(REPRESENTED BY BOX-WHISKER BARS), 
AWAP (RED CIRCLE) AND SEVERAL OTHER 
OBSERVATIONS AND RE-ANALYSIS DATA 
SETS (COLOURED DOTS). THE BOX-WHISKERS 
DISPLAY THE MIDDLE 50 % OF THE CMIP5 
MODELS (BOX, INCLUDING THE MEDIAN OF 
THE CMIP5 MODELS AS THICK BLACK LINE) 
AND THE RANGE (WHISKERS) WHILE OUTLIER 
MODELS ARE SHOWN AS BLACK CIRCLES (I.E. 
THEY ARE MORE THAN 1.5 TIMES THE BOX 
WIDTH AWAY FROM THE MEDIAN). THE TIME 
PERIOD USED IS 1986–2005.

During winter, the majority of climate models have warm 
biases over some regions of south-eastern Australia 
(Southern Slopes cluster). Most other cluster regions are 
very well simulated with the median temperatures often 
within 1 °C of the AWAP values. Noteworthy is the large 
overall spread between the models, which can reach more 
than 4 °C between the warmest and coldest model for a 
particular cluster. 

Overall, the biases in temperature point towards a 
deficiency in some models in capturing the north-south 
temperature gradient across Australia in either the summer 
or winter season.

Figures 5.2.3 and 5.2.4 show the cluster-based assessment of 
the CMIP5 model biases in seasonal surface air temperature 
and rainfall climatologies. In general, the CMIP5 models are 
able to capture seasonal temperatures much better than 
rainfall.

During summer, the model simulated median temperatures 
(Figure 5.2.3) are very close to AWAP reference values, 
particularly for the warmer regions across northern and 
central Australia (Monsoonal North and Rangelands clusters 
for example). While the temperature range within the 
model ensemble can be as large as 3 °C (with some models 
showing an even larger cold bias in southern regions and 
Tasmania), the majority of the models are within ±1 °C of the 
observed values.
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FIGURE 5.2.4: CLUSTER AVERAGED RAINFALL 
(UNITS: MM PER DAY) FOR SUMMER (DEC-
FEB, TOP) AND WINTER (JUN-AUG, BOTTOM) 
FROM ALL CMIP5 MODELS (REPRESENTED 
BY BOX-WHISKER BARS), AWAP (RED CIRCLE) 
AND SEVERAL OTHER OBSERVATIONS AND 
RE-ANALYSIS DATA SETS (COLOURED DOTS). 
THE BOX-WHISKERS DISPLAY THE MIDDLE 50 
% OF THE CMIP5 MODELS (BOX, INCLUDING 
THE MEDIAN OF THE CMIP5 MODELS AS THICK 
BLACK LINE) AND THE RANGE (WHISKERS) 
WHILE OUTLIER MODELS ARE SHOWN AS BLACK 
CIRCLES (I.E. THEY ARE MORE THAN 1.5 TIMES 
THE BOX WIDTH AWAY FROM THE MEDIAN). THE 
TIME PERIOD USED IS 1986–2005.

Cluster-based rainfall biases are shown in Figure 5.2.4 
for summer and winter. The skill of models in simulating 
climatological rainfall varies strongly across Australia: for 
example during summer, models capture rainfall amounts 
over regions with moderate to high seasonal rainfall totals 
such as the monsoon regions (except the Wet Tropics) and 
along the East Coast (except the East Coast South sub-
cluster), but show more variable skill elsewhere.

While there is a fairly large model spread (particularly over 
the monsoon affected regions), the median rainfall is close 
to the AWAP data in summer. Along the tropical east coast 
(Wet Tropics cluster), models show a substantial dry bias. 
Further south and inland, there is a general tendency for 
models to overestimate summer rainfall (i.e. Rangelands, 
Southern Slopes, Murray Darling Basin, Central Slopes 

clusters) with wet biases of up to 20 mm/month. Further 
south (Tasmania), the model biases are reversed with strong 
dry biases of around 20 mm/month for the entire region.

During winter (e.g. the main rainfall period for southern 
clusters), the model ensemble shows a dry bias over most 
of the higher rainfall regions (Southern Slopes and Murray 
Basin clusters), except for the East Coast cluster where 
the GCM ensemble median rainfall is a good match to 
the observed rainfall. The dry bias is particularly large in 
Tasmania where almost all models underestimate winter 
rainfall. For the large Rangelands cluster, winter rainfall is 
slightly overestimated. The models capture lower rainfall 
totals well along the tropical regions (Wet Tropics and 
Monsoonal North clusters) and also the higher winter 
rainfall of the East Coast cluster. Dry biases are common 
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FIGURE 5.2.5: CLIMATOLOGICAL MEAN SEA LEVEL PRESSURE FROM HADSLP2 (A, D, G, USED AS THE REFERENCE DATA SET, SEE TABLE 
5.1), THE AVERAGE OF A SELECTION OF OTHER OBSERVATIONAL DATA SETS (B, E, H, SEE TABLE 5.2.1) AND THE CMIP5 ENSEMBLE 
MEAN OF THE MODELS (C, F, I) FOR ANNUAL (TOP ROW), SUMMER (DEC-FEB, MIDDLE ROW) AND WINTER (JUN-AUG, BOTTOM 
ROW) MEAN SEA LEVEL PRESSURE. THE AVERAGING PERIOD IS 1986-2005 AND THE UNITS ARE HECTOPASCALS (HPA). THE X1, 
X2, AND X3 CONTOURS ARE HIGHLIGHTED FOR BETTER COMPARISON. THE NUMBER IN THE TOP RIGHT CORNER INDICATES THE 
SPATIAL CORRELATION BETWEEN THE CORRESPONDING DATA AND HADSLP2 (WITH VALUES CLOSER TO ONE INDICATING A BETTER 
CORRELATION). THE SPREAD IN THE DATA SETS IS INDICATED BY THE BOX-WHISKER TO THE RIGHT OF EACH SUBPLOT: EACH SHOWS 
THE AUSTRALIA-AVERAGED MEAN SEA LEVEL PRESSURE WHERE THE GREY BOX REFERS TO THE MIDDLE 50 % OF THE DATA AND THE 
WHISKERS SHOW THE SPREAD FROM MINIMUM TO MAXIMUM. THE THICK BLACK LINE IS THE MEDIAN OF THE UNDERLYING DATA 
AND THE RED LINE IS HADSLP2.

in mountainous regions, which is likely due to model 
resolution being insufficient to simulate local orographic 
enhancement of rainfall.

Figure 5.2.5 shows the comparison of annual and seasonal 
climatologies of mean sea level pressure for the wider 
region around Australia from observations and the 
ensemble mean. The middle and bottom rows display the 
shift between summer and winter pressure climatologies. 
During summer, the monsoonal low over north-west 
Western Australia dominates with high pressure systems 
pushed south of the continent. During winter, the high 
pressure system over the continent dominates. On average, 
the CMIP5 models capture these patterns very well (high 
spatial correlations), but the heat low during summer across 
the ‘Top End’ is too deep and broad. The model spread is 
several hectopascals (hPa) either side of the mean sea level 
pressure.

5.2.2	 ASSESSMENT OF SPATIAL STRUCTURE OF 
HISTORICAL MEAN CLIMATOLOGIES: M-SCORES 
FOR RAINFALL AND TEMPERATURE

The correct representation of climatological seasonal 
rainfall is a very important test for climate models. 
Questions such as how well the models capture the 
southward extent of the monsoon are a typical example 
addressing this issue. Similarly important and somewhat 
related is the representation of temperature distribution 
across Australia. There are several methods that can be used 
to evaluate spatial characteristics from climate models. 
Here we applied the M-Statistic (see Box 5.1; Watterson, 
1996) which has also been used for the previous Climate 
Change in Australia projections (CSIRO and BOM, 2007).

Two recent studies have made use of skill scores based 
on the M statistic for seasonal climatologies of selected 
climatic variables. Watterson et al. (2013a) used a simple 
test for overall skill in basic surface climate (calculating 
M-scores for each model) and Watterson et al. (2013b) 
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applied tests of various features of climate (such as the 
subtropical jet). 

The calculations were done for the super-cluster regions 
(see Figure 2.3) used in this assessment: Southern Australia 
(SA), Eastern Australia (EA), Northern Australia (NA), and 
the Rangelands (R). The overall average of the M-scores 
(for three variables and four seasons) for each region and 
each model are given in Table 5.2.2. The score is out of a 
maximum of 1000. Most CMIP5 models show considerable 
skill in each region. The scores tend to be lower in smaller 
regions that have less spatial variation. The top scoring 
model for the full Australian region (AUS) is ACCESS1.0, but 
others do best for other regions. 

Given the continuing use and validity of CMIP3 results, there 
is interest in how the two ensembles compare. Watterson 
et al. (2013a) gave results for 24 models in CMIP3. The top 
results are a little lower than for CMIP5, with differences 
from 14 to 111 points, as can be seen in Table 5.2.2. The 
means show a consistent, and larger, improvement for 
CMIP5, by 57 points for AUS. In fact, several CMIP3 models 
have poor scores, lowering the CMIP3 mean considerably. 

The best performing models on these scores are: 
ACCESS1-0, bcc-csm1-1-m, EC-EARTH, HadGEM2-ES, MPI-ESM-
LR and MPI-ESM-MR. The worst performing models are 
BNU-ESM, CESM1-WACCM, CMCC-CESM, GISS-E2-H, GISS-E2-
H-CC, MIROC-ESM and MIROC-ESM-CHEM.

MODEL AUS SA EA NA R

ACCESS1-0 727 575 514 540 677

ACCESS1-3 691 492 463 532 583

bcc-csm1-1 684 464 447 513 604

bcc-csm1-1-m 711 573 490 525 611

BNU-ESM 564 388 260 400 462

CanESM2 706 542 447 544 616

CCSM4 642 519 429 492 533

CESM1-BGC 653 518 471 488 543

CESM1-CAM5 659 589 640 475 511

CESM1-WACCM 555 360 429 410 442

CMCC-CESM 549 355 240 283 479

CMCC-CM 663 583 416 532 554

CMCC-CMS 672 471 408 553 568

CNRM-CM5 706 587 450 537 584

CSIRO-Mk3-6-0 613 431 362 467 500

EC-EARTH 711 636 569 499 587

FGOALS-g2 653 518 398 417 551

FIO-ESM 641 480 347 451 546

GFDL-CM3 676 546 571 465 542

GFDL-ESM2G 638 467 499 389 527

GFDL-ESM2M 607 383 396 393 515

GISS-E2-H 586 458 426 358 432

GISS-E2-H-CC 581 473 405 344 430

GISS-E2-R 575 516 406 350 445

GISS-E2-R-CC 614 543 459 394 477

HadGEM2-AO 711 499 499 541 634

HadGEM2-CC 698 533 472 538 628

HadGEM2-ES 720 556 506 554 674

inmcm4 657 455 423 434 569

IPSL-CM5A-LR 581 395 299 512 532

IPSL-CM5A-MR 612 477 360 556 527

IPSL-CM5B-LR 625 424 307 498 569

MIROC5 644 488 431 499 521

MIROC-ESM 549 434 321 379 451

MIROC-ESM-CHEM 561 450 344 386 456

MPI-ESM-LR 720 542 520 567 650

MPI-ESM-MR 705 513 513 587 625

MRI-CGCM3 659 511 482 434 559

NorESM1-M 604 480 471 368 505

NorESM1-ME 594 475 455 362 488

CMIP5 Average 643 492 434 464 543

CMIP3 Average 586 442 383 407 473

CMIP5 Top model 727 636 640 587 677

CMIP3 Top model 706 587 529 573 625

BOX 5.1: M STATISTIC FOR AGREEMENT

The M statistic or skill score is used as a metric 
for agreement between simulated and observed 
climatological fields over a particular region 
(Watterson, 1996). For the model field X and observed 
field Y, the M score is given by 

M = (2/π) arcsin[1 – mse / (VX +VY + (GX – GY)
2)],

with mse the mean square error between X and Y, 
and V and G the spatial variance and regional mean, 
respectively, of the fields (as subscripted). 

Like the correlation coefficient, M is non-dimensional 
and varies between +1 and  1, with 0 signifying no 
agreement. However, with M, 1 is reached only for 
identical fields (mse = 0), and M approaches 1 more 
slowly (for instance, global temperature fields typically 
correlate at r = 0.99, while M is 0.90). Tabulated 
values are multiplied by 1000. Averages of M-scores 
for the four seasons, for individual variables over the 
Australian region, are given in Table 5.2.2. Note that 
the M statistic is x1000. The average of scores for the 
three standard variables temperature, precipitation 
and pressure gives the score for overall skill in 
simulating the present climate for each model in Table 
5.2.2. This overall score was used as a weight for each 
model in calculating projections by the 2007 method 
(see Section 6.2). Watterson et al. (2013a) further 
compares scores from CMIP5 and CMIP3 models over all 
continents.

TABLE 5.2.2: OVERALL SKILL SCORES FOR 40 CMIP5 MODELS 
OVER FIVE AUSTRALIAN DOMAINS. THE VALUES ARE THE 
AVERAGE M SCORE, TIMES 1000, FOR TEMPERATURE, RAINFALL 
AND MEAN SEA LEVEL PRESSURE, AND THE FOUR SEASONS. 
THE TOP VALUES ARE HIGHLIGHTED IN RED AND LOWEST 
VALUES IN BLUE. ALSO SHOWN ARE THE OVERALL AVERAGES 
AND TOP MODEL SCORE FOR THE CMIP5 ENSEMBLE AS WELL 
AS FOR CMIP3 FOR COMPARISON.
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FIGURE 5.2.6: AVERAGE ANNUAL CYCLES OF SURFACE AIR TEMPERATURE FOR AUSTRALIA (TOP LEFT) AND SELECTED REGIONS (EAST 
AUSTRALIA - EA, NORTH AUSTRALIA - NA, RANGELANDS - R, SOUTHERN AUSTRALIA - SA, AND SOUTHERN SLOPES - SS) FROM CMIP5 
MODELS. EACH GREY LINE REPRESENTS A MODEL SIMULATION, THE BLACK LINE BEING THE ENSEMBLE MEAN AND OBSERVATIONS 
(AWAP) SHOWN AS A BROWN LINE. THE AVERAGING PERIOD IS 1986–2005.

5.2.3	 ASSESSMENT OF ANNUAL CYCLES OF 
HISTORICAL CLIMATE: RAINFALL AND 
TEMPERATURE

The annual cycle is one of the main climate features 
which, particularly for temperature and rainfall, is a crucial 
element to simulate correctly. Figure 5.2.6 shows the 
surface air temperature annual cycles for Australia and 
the super-cluster regions. In general there is very good 

agreement, but with some model spread around the mean. 
For most regions (and months) the multi-model average 
is within half a degree of the AWAP value. One exception 
is the Southern Slopes cluster (Figure 5.2.6 bottom right) 
where models are too warm year round, but most of the 
differences there are related to biases over Tasmania (which 
is often poorly resolved) and not over the Victorian region 
within Southern Slopes.
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Figure 5.2.7 shows the corresponding rainfall annual cycles 
for the same regions. Because of the small-scale processes 
involved in rainfall simulation, it is more difficult to correctly 
simulate rainfall, particularly across small regions such as 
some of the clusters.

Regions with a pronounced annual rainfall cycle, such as 
monsoon dominated Northern Australia, show good model 
skill with the multi-model average matching the AWAP 
cycle – albeit with large inter-model spread. Other regions 
show more varying model skill and while the average might 
still be close to AWAP there is significant departure by some 
models. In the example of a fairly “flat” annual rainfall cycle 
(Southern Slopes cluster, Figure 5.2.7 bottom right), some 
models show even a reversed annual cycle (also see Figure 
7.2.7).

FIGURE 5.2.7: AVERAGE ANNUAL CYCLES OF RAINFALL FOR AUSTRALIA (TOP LEFT) AND SELECTED REGIONS (EAST AUSTRALIA - EA, 
NORTH AUSTRALIA - NA, RANGELANDS - R, SOUTHERN AUSTRALIA - SA, AND SOUTHERN SLOPES - SS) FROM CMIP5 MODELS. EACH 
GREY LINE REPRESENTS A MODEL SIMULATION, THE BLACK LINE BEING THE ENSEMBLE MODEL MEAN AND OBSERVATIONS (AWAP) 
SHOWN AS A BROWN LINE. THE AVERAGING PERIOD IS 1986–2005.

The spatial-temporal root-mean-square-error (STRMSE) is 
used as a skill measure for the 1986–2005 annual-average 
rainfall cycle (following Gleckler et al. 2008). It combines 
spatial deviations from observed patterns for each month, 
thereby reflecting also the skill of simulating the annual 
cycle. This error measure is portrayed in Figure 5.2.8 as a 
relative error by normalizing the result by the median error 
of all model results. For example, a value of 0.20 indicates 
that a model’s STRMSE is 20 % larger than the median 
CMIP5 error for that variable, whereas a value of -0.20 
means the error is 20 % smaller than the median error. For 
Australia, the median STRMSE for the CMIP5 models is close 
to 1 mm/day. The group of models that show significantly 
lower STRMSE values for rainfall are: MPI-ESM-MR, HadCM3, 
MPI-ESM-LR, IPSL-CM5B-LR, MRI-CGCM3, MIROC4h and 
CNRM-CM5. Those that have at least 30 % higher STRMSE 
than the median error are: CESM1-BGC, CCSM4, NorESM1-
ME, NorESM1-M, CESM1-WACCM and CMCC-CMS.
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5.2.4	 ASSESSMENT OF ADDITIONAL CLIMATE 
FEATURES AND ASSOCIATED SKILL SCORES

INTRODUCTION

As part of the UK Met Office’s CAPTIVATE project (Scaife 
et al. 2011; stands for Climate Processes, Variability and 
Teleconnections), an evaluation of simulated Australian 
climate features was used. The tests were initially applied 
to the three Australian CMIP5 models (ACCESS 1.0, ACCESS 
1.3 and CSIRO Mk3.6), with the results described in 
Watterson et al. (2013b). Here we consider only the tests 
for climatological features, which have been somewhat 
modified to suit the available data and NRM interests. 

Again, the M statistic is used to quantify the agreement 
between each model and the observations, in each season. 
The variable and domains depend on the test, as outlined 
in Table 5.2.3. The variables surface air temperature (tas) 
and precipitation (pr), without being averaged as in Table 
5.2.2, are tested and the domain is that of the Australian 
land area. The domain for the variable sea level pressure 
(psl) is over the larger region, as described in Table 5.2.3 in 
order to capture the pressure systems extending past the 
continent. Also tested over Australian land are incoming 
solar radiation (rsds) and the diurnal temperature range 
(DTR; using maximum and minimum temperature). Data for 
DTR are missing for 3 models (CMCC-CM, MPI-SEM-MR and 
NorESM1-ME). 
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   FEATURE FIELDS- CMIP5 NAME DOMAIN

1.5m Temperature tas Australia – land only

Rainfall pr Australia – land only

Solar radiation rsds Australia – land only

Diurnal temperature range DTR Australia – land only

Zonal and meridional winds at 850 
hPa height

ua, va 850hPa Region (longitude: 105 °E–165 °E; latitude: 0 °S–50 °S)

Zonal and meridional winds at 200 
hPa height

ua, va 200hPa Region (longitude: 105 °E–165 °E; latitude: 0 °S–50 °S)

Sea level pressure psl Region (longitude: 105 °E–165 °E; latitude: 0 °S–40 °S)

Subtropical jet ua, 850, 500, 200 hPa East Australia (longitude: 140 °E–150 °E; latitude: 15 °S–40 °S)

Monsoon onset ua, va 1000 hPa  
ua 850hPa

North Australia (longitude: 120 °E–150 °E; latitude: 10 °S–20 °S)

TABLE 5.2.3: OVERVIEW OF TESTS FOR NINE FEATURES OF AUSTRALIAN CLIMATE, WITH VARIABLES AND DOMAIN GIVEN. ALL TESTS 
ARE DONE ACROSS THE FOUR SEASONS, EXCEPT FOR ‘MONSOON ONSET’, WHICH IS OVER SON AND DJF ONLY. 
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The diurnal temperature range is an important indicator 
for models’ representation of extreme cold and warm 
temperatures, and therefore contributes to the skill in 
representing temperature extremes. Table 5.2.4 shows a 
very large spread along M-skill scores for DTR in CMIP5 
models (from 94 to 496), which indicates that (a) the 
simulation of DTR is the least skillful of all features listed in 
Table 5.2.3 and (b) the spread of skill is largest amongst the 
CMIP5 models for DTR compared to the other features.

The ERA-Interim data set is again used as representing the 
observations for rsds (although given some doubt about 
its representation of cloud cover, the corresponding scores 
from the rsds field may not be reliable). For DTR, the AWAP 
data set is used.

The four other tests use wind data in zonal (east-west) and 
meridional (north-south) direction, which are available 
from 20 of the 40 models. The tests for wind at 850 hPa 
and 200 hPa are over the larger region (see Table 5.2.3) and 
are representative measures for skill in capturing the larger 
atmospheric circulation both closer to the surface (850 
hPa) and further aloft (200 hPa). The tests for ‘Subtropical 
Jet’ and ‘Monsoon Onset’ are very simplified tests of 
winds over smaller rectangular regions (see Table 5.2.3 for 
domain details). Wind data from ERA-Interim are used as 
representing the observations.

The scores for the nine tests are given in Table 5.2.4. 
Quantities with smaller spatial variation tend to have 
smaller scores, in particular DTR. Even the best score for 
DTR, from ACCESS1.0, is only 496.  

The top six models (averaged over the nine tests) are: 
ACCESS-1.0, CMCC-CM, CNRM-CM5, HadGEM2-CC, HadGEM2-
ES, and MPI-ESM-MR. Note that three out of these six have 
the same atmosphere model. The worst performing models 
are: BNU-ESM, CESM1-WACCM, GISS-E2-H-CC, GISS-E2-R, 
GISS-E2-R-CC, IPSL-CM5A-LR, MIROC-ESM and MIROC-ESM-
CHEM.

The main purpose of the scores is to support the NRM 
project by providing information about the quality of the 
models being used for projections. Naturally, these tests 
are only for the climate of the past decades, and the link 
between such skills and the reliability of climate changes 
is not well established. Nevertheless, skill in simulating 
the features of climate through the four seasons can add 
confidence in a model’s ability to simulate changes that 
follow from global warming. This confidence is part of 
the overall assessment of projected changes in Australia’s 
climate (see Section 6.4). The scores for the nine features 
add to the information available for assessment. It is 
important to note that both versions of ACCESS are well 
ranked in most of these tests. 

THE EL NIÑO-SOUTHERN OSCILLATION

The El Niño-Southern Oscillation (ENSO) phenomenon 
is the dominant driver of climate variability on seasonal 
to interannual time scales for Australia (see for example 
Risbey et al. 2009b, Wang et al. 2004a, see also Section 4.1). 
While there has been an improvement in the simulation 
of ENSO in climate models from CMIP3 to CMIP5 (see for 
example Guilyardi et al. 2009; Chapter 14 in IPCC, 2013), 
some systematic errors remain and impact to some extent 
on the simulation of the relationship between ENSO and 
Australian rainfall (Watanabe et al. 2012, Weller and Cai, 
2013a). However, there are improvements in the multi-
model mean which is mostly due to a reduced number of 
poor-performing models (Flato et al. 2013).

The ENSO-rainfall teleconnection involves mechanisms 
similar to those related to the rainfall response to global 
warming (Neelin et al. 2003) and therefore provides a 
valuable insight into each model’s rainfall response. While 
CMIP5 models display a slightly better skill in Australian 
rainfall reductions associated with El Niño (Neelin, 2007, Cai 
et al. 2009, Coelho and Goddard, 2009, Langenbrunner and 
Neelin, 2013), there is not much additional improvement 
over CMIP3. There is also little change in their abilities to 
represent the correlations between the equatorial Pacific 
sea surface temperatures (Niño 3.4 region) and north 
Australian sea surface temperatures (Catto et al. 2012a, 
2012b) with models failing to adequately capture the 
strength of the negative correlations during the second 
half of the year. In general, the evolution of sea surface 
temperatures in the north Australian region during El Niño 
and La Niña is still problematic for models to simulate. 

The teleconnection patterns from ENSO to rainfall 
over Australia are reasonably well simulated in the key 
September-November season (Cai et al. 2009, Weller 
and Cai, 2013b) in the CMIP3 and CMIP5 multi-model 
mean. Figure 5.2.9 shows the ranked list of the skill of 
this relationship in both CMIP3 and CMIP5 models. While 
there is clearly a majority of CMIP5 models towards the 
more skilful end of the list, there are a few CMIP5 models 
showing very little correlation (CSIRO-Mk3-6-0, IPSL-CM5A-
MR, IPSL-CM5A-LR, HadCM3) or only small correlation 
(CanESM2, MIROC-ESM, INMCM4, and GFDL-ESM2G).
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TABLE 5.2.4: SKILL SCORES FOR 40 CMIP5 MODELS FOR NINE FEATURES OF AUSTRALIAN CLIMATE. THE VALUES ARE THE AVERAGE M 
SCORE, TIMES 1000. THE TOP VALUES ARE HIGHLIGHTED IN RED AND LOWEST VALUES IN BLUE. WHERE THERE WAS SOME MISSING 
DATA, THE SCORE COULDN’T BE CALCULATED AND ARE INDICATED BY ‘XXX’.

MODEL TAS PR RSDS DTR WIND850 WIND200 PSL ST JET MONS 
ONS

ACCESS1-0 832 552 604 496 760 750 834 798 645

ACCESS1-3 792 544 606 198 690 678 798 738 496

bcc-csm1-1 780 499 699 295 657 684 716 687 543

bcc-csm1-1-m 766 525 744 365 xxx xxx 811 xxx xxx

BNU-ESM 755 451 534 120 xxx xxx 615 xxx xxx

CanESM2 824 492 705 426 717 718 812 712 500

CCSM4 816 379 602 172 720 758 802 744 611

CESM1-BGC 824 400 645 184 xxx xxx 801 xxx xxx

CESM1-CAM5 806 493 544 188 xxx xxx 815 xxx xxx

CESM1-WACCM 743 281 337 94 xxx xxx 673 xxx xxx

CMCC-CESM 641 479 644 289 xxx xxx 481 xxx xxx

CMCC-CM 794 486 698 xxx xxx xxx 757 xxx xxx

CMCC-CMS 729 564 725 358 xxx xxx 673 xxx xxx

CNRM-CM5 742 602 770 485 xxx xxx 863 xxx xxx

CSIRO-Mk3-6-0 744 482 601 400 691 666 657 647 658

EC-EARTH 687 701 xxx 315 xxx xxx 765 xxx xxx

FGOALS-g2 755 535 725 235 667 737 586 625 624

FIO-ESM 817 424 705 141 xxx xxx 636 xxx xxx

GFDL-CM3 781 564 790 172 741 724 731 623 653

GFDL-ESM2G 716 472 617 122 712 724 798 771 593

GFDL-ESM2M 728 469 630 118 745 740 731 726 589

GISS-E2-H 661 490 271 228 662 647 738 748 486

GISS-E2-H-CC 610 501 269 181 xxx xxx 769 xxx xxx

GISS-E2-R 651 461 286 272 xxx xxx 760 xxx xxx

GISS-E2-R-CC 731 472 279 265 xxx xxx 779 xxx xxx

HadGEM2-AO 808 600 644 496 xxx xxx 797 xxx xxx

HadGEM2-CC 800 541 723 474 737 718 782 781 638

HadGEM2-ES 807 561 715 457 730 735 801 744 602

inmcm4 681 524 730 290 657 683 815 635 439

IPSL-CM5A-LR 796 403 414 118 622 659 507 473 390

IPSL-CM5A-MR 825 404 406 100 674 688 612 531 446

IPSL-CM5B-LR 760 596 519 128 xxx xxx 559 xxx Xxx

MIROC5 793 432 805 338 xxx xxx 778 xxx Xxx

MIROC-ESM 790 342 710 271 519 561 488 552 319

MIROC-ESM-CHEM 790 333 695 265 517 574 516 560 300

MPI-ESM-LR 830 593 812 232 xxx xxx 743 xxx xxx

MPI-ESM-MR 808 640 799 xxx xxx xxx 704 xxx xxx

MRI-CGCM3 726 599 652 350 xxx xxx 743 xxx xxx

NorESM1-M 730 347 558 162 699 699 779 774 627

NorESM1-ME 724 343 559 xxx 676 699 752 785 623
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THE AUSTRALIAN MONSOON

The Australian monsoon is the main driver of annual 
variation in the tropical regions (Trenberth et al. 2000, 
Wang and Ding, 2008, Moise et al. 2012) and therefore is an 
important feature for climate models to correctly simulate. 
This will also enhance confidence in future projections of 
mean changes and associated impacts (Colman et al. 2011).

The monsoon is characterised by an annual reversal 
of the low level winds and well defined dry and wet 
seasons (Moise et al. 2012, Wang and Ding, 2008), and 
its variability is primarily connected to the Madden-
Julian Oscillation (MJO) and ENSO. Most CMIP3 models 
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FIGURE 5.2.9: PATTERN CORRELATIONS (AGAINST THE CMAP-HADISST REFERENCE PATTERN) OF THE ENSO-AUSTRALIAN-RAINFALL 
TELECONNECTION PATTERN FOR EACH CMIP5 (RED) AND CMIP3 MODEL (GREEN). A SECOND OBSERVED DATA SET (GPCP-HADISST, 
BLACK BAR) IS SHOWN ON THE RIGHT WHILE THE MODELS ARE ORDERED IN INCREASING SKILL TOWARDS THE RIGHT. THE 
ENSEMBLE MEAN OF THE MODELS ARE SHOWN IN PINK (FOR CMIP5) AND LIGHT GREEN (FOR CMIP3).

FIGURE 5.2.10: MONTHLY SEASONAL CLIMATOLOGY OF 850 
HPA ZONAL WIND (1986-2005), AVERAGED OVER 120–150°E, 
10–20°S LAND ONLY FOR 37 CMIP5 MODELS, 5 REANALYSIS 
PRODUCTS (CFSR, MERRA, NCEP2, ERA40 AND ERA-INT; 
FORMING THE PINK SHADED BAND) AND THE ENSEMBLE 
MEAN OF THE MODELS OF CMIP3 (RED) AND CMIP5 (BLUE). 
THE THICK BLACK LINE REPRESENTS THE ENSEMBLE MEAN 
OF CMIP5 EXCLUDING MODELS NOT SIMULATING MONSOON 
WESTERLIES OVER THIS REGION.
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poorly represent the characteristics of the monsoon and 
monsoon teleconnections (Randall et al. 2007), with some 
improvement in CMIP5 with respect to the mean climate, 
seasonal cycle, intraseasonal, and interannual variability 
(Sperber et al. 2013; also see Figure 5.2.7 top right for 
Northern Australia). Figure 5.2.10 shows the annual cycle 
of low level zonal winds for CMIP5 models and several 
reanalysis data sets. On average the models reversal to 
westerlies starts later than in the reanalysis, but has a 
similar timing in the switch to easterlies in March. Several 
models fail to simulate monsoon westerlies over northern 
Australia altogether: GISS-E2-H, GISS-E2-H-CC, GISS-E2-R, 
IPSL-CM5A-LR, IPSL-CM5A-MR, MIROC-ESM, INMCM4, 
ACCESS1-3 and MIROC-ESM-CHEM.

While the entire annual rainfall cycle has been assessed 
earlier using the spatial-temporal root-mean-square error 
(STRMSE, see Figure 5.2.8) here we focus on the wet season 
only and assess the spatial distribution of wet season 
rainfall from the models over the tropical Australia domain. 
Figure 5.2.11 shows the ranked list of the skill of Australian 
tropical rainfall distribution in both CMIP3 and CMIP5 
models. While there is clearly a majority of CMIP5 models 
towards the more skilful end of the list, there are a few 
CMIP5 models showing very little skill (MIROC-ESM, MIROC-
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FIGURE 5.2.11: WET SEASON (NOV-FEB) RAINFALL PATTERN CORRELATIONS (AGAINST GPCP REFERENCE DATA SET) FOR CMIP5 (RED) 
AND CMIP3 MODELS (GREEN) OVER TROPICAL AUSTRALIA. A SECOND OBSERVED DATA SET (CMAP, BLACK BAR) IS SHOWN ON THE 
LEFT WHILE THE MODELS ARE ORDERED IN INCREASING SKILL TOWARDS THE RIGHT.

ESM-CHEM, MPI-ESM-LR, MPI-ESM-MR, MPI-ESM-P) or only 
small skill (GFDL-ESM2G, MIROC5, and HadCM3).

With respect to the onset of the Australian monsoon, Table 
5.2.4 also includes the M-score for skill in monsoon onset 
for CMIP5 models. While better models reach a score above 
600, several models score below 400 and both MIROC-ESM 
and MIROC-ESM-CHEM are close to 300. 

ATMOSPHERIC BLOCKING

The climate along the Australian mid-latitudes is 
predominantly affected by weather regimes such as 
east-west moving pressure systems or East Coast Lows, 
and blocking weather regimes are often associated with 
extreme rainfall events (see Section 4.1.2 and also Risbey 
et al. 2009a). During blocking, the prevailing mid-latitude 
westerly winds and storm systems are interrupted by a local 
reversal of the zonal flow resulting in enhanced rainfall 
events. The strongest correlation between blocking (using 
a blocking index) and Australian rainfall is during autumn, 
but also in winter. It affects mainly south-eastern regions of 
the continent (Risbey et al. 2009a).

Climate models in the past have universally underestimated 
the occurrence of blocking. As in CMIP3, most of the CMIP5 

C H a p t e r  F I V E 67



models still significantly underestimate blocking (Dunn-
Sigouin and Son, 2013). Increasing model resolution is 
expected to improve model representation of blocking 
significantly (IPCC, 2013, Chapter 14).

During atmospheric blocking the upper tropospheric 
westerly air stream typically splits into two sections. The 
strength of this split can be assessed through a combination 
of the upper air zonal wind field (at 500hPa) at different 
latitudes integrated into a simple Blocking Index (BI, Pook 
and Gibson, 1999 see also Risbey et al. 2009a, Grose et al. 
2012):

	 BI = 0.5(ua25+ua30-ua40-2ua45-ua50+ua55+ua60)

Where uax is the zonal wind at 500hPa at latitude x 
(degrees south). The BI is calculated here at longitude 140°E 
which represents the region over Australia where blocking 
is typically observed. The CMIP5 models were evaluated 
with respect to the seasonal correlations of the Blocking 
Index in autumn and winter to rainfall across relevant 
south-eastern cluster regions (Central Slopes, East Coast 
South, Murray Basin, Southern Slopes) (results not shown). 
Almost half of the models assessed showed reasonable 
correlations across several clusters. Models that showed 
very low skill in reproducing this relationship include 
ACCESS1-3, CanCM4, GFDL-ESM2G, GISS-E2-R and GISS-E2-H. 

SOUTHERN ANNULAR MODE

The Southern Annular Mode (SAM) is the most dominant 
driver for large-scale climate variability in the mid- and 
high-latitudes of the Southern Hemisphere (Thompson and 
Solomon, 2002) – describing the alternation of atmospheric 
mass between high- and mid-latitudes. This alternation 
affects pressure and wind patterns across southern parts 
of Australia and therefore also impacts on rainfall in these 
regions (for more detail, see Section 4.1.2 and also Hendon 
et al. 2007, Risbey et al. 2009b). When SAM is in its high 
phase there are higher pressures over southern Australia, 
wind anomalies are predominantly easterly and rainfall is 
reduced on west-facing coastlines, but enhanced on east-
facing regions.

CMIP3 and CMIP5 models are able to produce a clear 
Southern Annular Mode (Raphael and Holland, 2006, Zheng 
et al. 2013, Barnes and Polvani, 2013), but there are relatively 
large differences between models in terms of the exact 
shape and orientation of this pattern. 

THE INDIAN OCEAN DIPOLE

Similar to ENSO, the Indian Ocean dipole mode (IOD) (see 
Section 4.1.2) is an ocean-atmosphere phenomenon located 
in the tropical Indian Ocean. The main period of impact on 
Australian rainfall is spring (Sep-Nov) and depending on the 
phase of the IOD, the ENSO impact can be enhanced over 
Australia. If the IOD is in its positive phase, El Niños can 
result in stronger reduction of rainfall and if the IOD is in 
its negative phase, La Niñas show further enhanced rainfall 
(Risbey et al. 2009b).

Most CMIP3 and CMIP5 models are able to reproduce the 
general features of the IOD, but show a large spread in 
the strength of the IOD (Saji et al. 2006, Liu et al. 2011, 
Cai and Cowan, 2013). Most models also show a location 
bias in the westward extension of the IOD. No substantial 
improvement is seen in CMIP5 compared to CMIP3 (Weller 
and Cai, 2013a).

A majority of CMIP3 and CMIP5 models also simulate 
the observed correlation between IOD and ENSO. The 
magnitude of this correlation varies substantially between 
models, but seems independent of each model’s simulation 
of ENSO (Saji et al. 2006, Jourdain et al. 2013). 

The teleconnection patterns from both ENSO and IOD to 
precipitation over Australia are reasonably well simulated 
in the key September-November season (Cai et al. 2009, 
Weller and Cai, 2013b) in the CMIP3 and CMIP5 multi-model 
mean.

One way to assess the spatial structure of the IOD is by 
computing the Taylor statistics (Taylor, 2001) of the tropical 
Indian Ocean sea surface temperatures where the IOD 
occurs as shown in Figure 5.2.12. These statistics (spatial 
correlation; spatial root-mean-square error and spatial 
standard deviation) can highlight non-temporal deficiencies 
in the simulation of this feature. Most CMIP5 models 
simulated very high spatial correlations. Combining the 
statistics into a skill score as proposed by Taylor (2001) we 
find that while most CMIP5 models show very high spatial 
correlations (above 0.95), the main difference between 
more skilful and less skilful models lies in their simulation 
of the spatial variability of sea surface temperatures 
(horizontal spread of letters in Figure 5.2.12). In particular, 
MRI-CGCM3 and CSIRO-MK3-6-0 have a much reduced 
variability and GFDL-CM3, IPSL-CM5B-LR, ACCESS1-0 and 
HadCM3 show a far too strong variability (furthest right 
from the reference dashed line).

THE MADDEN-JULIAN OSCILLATION

During summer the eastward propagating feature of 
enhanced and diminished convection from the Indian 
Ocean into the western Pacific known as the Madden-Julian 
Oscillation (MJO; Madden and Julian, 1972; 1994) mainly 
affects the tropics north of 15 °S. It is one of the dominating 
features of intra-seasonal variability (60–90 days) and 
plays a major role in the onset of the Australian monsoon 
(Wheeler et al. 2009; see Section 4.1).

Various diagnostics have been used to assess the skill of 
simulating the MJO in climate models (Waliser et al. 2009, 
Xavier, 2012). The main model errors in representing the 
MJO relate to the skill in the model convection schemes and 
their mean state biases (Kim et al. 2012, Mizuta et al. 2012, 
Inness et al. 2003). 

Sperber and Kim (2012) provided a simplified metric 
synthesising the skill of CMIP3 and CMIP5 model results. 
Some of the more skilful models are those with higher 
resolution (CNRM-CM5, CMCC-CM) while several models 
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showed very low coherence in the propagation of the 
convection: MIROC-ESM-CHEM, INM-CM4, IPSL-CM5A-MR, 
IPSL-CM5A-LR, MIROC-ESM, GFDL-ESM2G and HadGEM2-ES.

While Sperber and Kim (2012) show that the simulation of 
the MJO is still a challenge for climate models (see also 
Lin et al. 2006, Kim et al. 2009, Xavier et al. 2010), there 
has been some improvement in CMIP5 in simulating the 
eastward propagation of the summer MJO convection 
(Hung et al. 2013). Further improvements have been 
reported for the MJO characteristics in the east Pacific 
(Jiang et al. 2013). In general, CMIP5 models have improved 
compared to previous generations of climate models with 
respect to the MJO (Waliser et al. 2003, Lin et al. 2006, 
Sperber and Annamalai, 2008).

WINDS AND ATMOSPHERIC CIRCULATION

Wind fields across Australia are associated with large-scale 
circulation patterns and their seasonal movement. Across 
the southern half of Australia, average wind conditions are 
influenced by the seasonal movement of the subtropical 
high pressure belt which separates the mid-latitude 
westerly winds to the south and the south-east trade 
winds to the north (see Section 4.1.2 for more information 
on subtropical ridge). Across the north of Australia, from 
about November to March the Asian-Australian monsoon 
interrupts the trade winds bringing a north-westerly flow 
across northern Australia (see Figure 4.1.1). 

The evaluation of winds in climate models therefore mainly 
focuses on these two large-scale seasonal changes: the 
north-south shift across the southern half of Australia and 
the east-west reversal of winds across tropical Australia. 
Due to the sparseness of long-term, high quality wind 

measurements from terrestrial anemometers, a high quality 
gridded data set for wind is not available over Australia 
(Jakob, 2010). Therefore 10 m winds from reanalysis 
products are commonly used as a baseline against which 
climate model winds are compared (see Table 5.2.1 for 
overview of reanalysis data sets). The annual cycle in the 
pressure and latitude of the subtropical high pressure 
belt known as the subtopical ridge (STR) is fairly well 
represented in the CMIP3 mean, but each model has some 
biases in position and intensity (Kent et al. 2013). This 
means there are typically some biases in the northern 
boundary of the westerly circulation. Also, the relationship 
between the STR and rainfall variability is poorly simulated 
in some models and trends in the pressure of the ridge 
are underestimated by all CMIP3 models (Kent et al. 2013, 
Timbal and Drosdowsky, 2013). Preliminary results indicate 
that results are similar in CMIP5 models (not shown).     

The path of westerly weather system generally to the south 
of the subtropical ridge is known as the ‘storm track’ and is 
a crucial feature of rainfall variability in southern Australia. 
The representation of the storm track, and its connection 
to processes such as ENSO, has improved from CMIP3 to 
CMIP5, but certain models still show poor performance 
(Grainger et al. 2014).

Regarding the wind reversal over tropical Australia during 
the monsoon season, Figure 5.2.10 shows the annual cycle 
of low level zonal winds for CMIP5 models and several 
reanalysis data sets. As mentioned above, on average the 
models’ reversal to westerlies starts later compared to the 
reanalysis, but has a similar timing in the switch back to 
easterlies in March. As noted earlier, several models fail 
to simulate monsoon westerlies over northern Australia 
altogether.

FIGURE 5.2.12: TAYLOR PLOT OF SPATIAL STATISTIC OF SEA SURFACE TEMPERATURES FROM CMIP5 MODELS OVER THE TROPICAL 
EASTERN INDIAN OCEAN AGAINST HADISST OBSERVED SEA SURFACE TEMPERATURES (REF POINT AT HORIZONTAL AXIS). EACH 
LETTER REPRESENTS ONE CMIP5 MODEL’S SIMULATION AVERAGED OVER THE PERIOD (1986-2005).
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5.3	 EVALUATION OF SIMULATED RAINFALL 
AND TEMPERATURE TRENDS 

In addition to the long-term climatology and the annual 
cycle (see previous section), climate models are also 
evaluated with respect to how well they are able to 
reproduce observed climate change. Aspects of climate 
change have been extensively evaluated at global to 
continental scales and the simulated warming is found to 
agree well with observations (Stone et al. 2009). Changes 
in global precipitation, on the other hand, are less well 
reproduced in simulations (Zhang et al. 2007). Recently, 
global climate models have also been evaluated against 
observed regional climate change (van Oldenborgh et al. 
2009, van Haren et al. 2012, van Oldenborgh et al. 2013, 
Bhend and Whetton, 2013)

Recent regional trends in seasonal mean daily maximum 
and minimum temperature and rainfall have been 
evaluated (Bhend and Whetton, 2013). Simulated trends 
in the historical experiment from the CMIP5 ensemble are 
compared to the observed trends. Climate models used 
here have been run with a comprehensive set of observed 
and reconstructed boundary conditions including the 
changing atmospheric concentrations of greenhouse gases, 
aerosols, and ozone as well as solar irradiance changes. The 
models thus produce a realistic - within model limitations - 
representation of recent climate change.

It is important to note, however, that a portion of the 
observed and simulated recent change is due to natural 
internal variability in the climate system. This part of climate 
change differs between observations and simulations, 
as the simulations are not constrained to exhibit internal 
variability that is in phase with the observed internal 
variability. The remainder of the change – the signal 
– is due to changes in external forcing mechanisms 
and therefore in principle reproducible in long-term 
simulations (see Section 3.1 for further discussion). Only 
this deterministic, forced component of climate change can 
be used for evaluation of climate models. Therefore, being 
able to separate signal from noise (internal variability) is 
crucial when evaluating transient behaviour in climate 
models and a multitude of methods to achieve this exists 
(Bindoff et al. 2013). For simplicity, we assume here that the 
regional signal in both temperature and rainfall over the 
period from 1956 to 2005 is approximately linear.

Simulated seasonal rainfall and daily maximum and 
minimum temperature trends from 42 global climate 
models in the CMIP5 ensemble (see Table 3.3.1) are 
compared with observed trends in the station-based 
gridded datasets. ACORN-SAT (Trewin, 2013) and CRU TS3.20 
(Harris et al. 2013) were used for temperature, and AWAP 
(Jones et al. 2009a, Raupach et al. 2009; 2012) and CRU 
TS3.20 for precipitation (listed in Table 5.2.1 under CRU).   
We compute linear trends from 1956 to 2005 using ordinary 
least squares regression. 

The observed trends in seasonal mean daily maximum 
temperature from 1956 to 2005 show significant warming 
in eastern and southern Australia and widespread cooling 
(some of which is statistically significant) in the summer 
half-year in north-western Australia (Figure 5.3.1a-d). The 
ensemble median simulated trends for the same period 
show consistent warming and less than 10 per cent of 
the simulations reproduce the cooling in spring (SON) 
and summer (DJF) in north-western Australia (Figure 
5.3.1e-h). While the trend biases are locally significant (at 
90 per cent level based on a simple estimate of internal 
variability in observations and model time series) in the 
majority of the climate models, the area where significant 
differences are found is generally not larger than what one 
would expect due to internal variability alone. Results for 
trends in seasonal mean daily minimum temperatures are 
qualitatively similar (not shown).

The picture is similar for rainfall. The area where significant 
differences are found between observed and simulated 
rainfall trends is generally not larger than what one expects 
due to internal variability alone (Figure 5.3.2a-d). Less than 
10 per cent of the models reproduce the significant wetting 
in north-western Australia in summer (DJF), the drying in 
south-eastern Australia in autumn (MAM) and the wetting 
in north-eastern Australia in spring (SON). Additional 
analyses reveal that the majority of the models significantly 
(at the 10 per cent level) underestimate the observed 
wetting in north-western Australia in summer and the 
observed drying in south-eastern Australia in spring (not 
shown.) (i.e. due to random chance).

In conclusion, areas where the CMIP5 ensemble fails to 
reproduce observed trends from 1956-2005 in seasonal 
mean daily maximum and minimum temperature and 
seasonal rainfall are evident. The extent of the areas for 
which these discrepancies exist, however, is generally not 
larger than expected due to the pronounced variability 
on inter-annual to decadal scales. Therefore, there is no 
conclusive evidence that CMIP5 models fail to reproduce 
recent observed trends in daily maximum and minimum 
temperature and rainfall. Nevertheless, confidence in 
rainfall projections is inevitably reduced where consistency 
is low, particularly north-western Australia in summer and 
south-eastern Australia in autumn.
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FIGURE 5.3.2: AS IN FIGURE 5.3.1 BUT FOR SEASONAL RAINFALL IN MM PER DECADE.

FIGURE 5.3.1: OBSERVED TREND IN SEASONAL MEAN DAILY MAXIMUM TEMPERATURE FROM 1956 TO 2005 (A-D) AND MEDIAN 
OF SIMULATED TRENDS FROM 42 CMIP5 MODELS (E-H). CROSSES IN A-D DENOTES AREAS WHERE THE OBSERVED TREND IS 
SIGNIFICANTLY DIFFERENT FROM ZERO AT THE 10 % LEVEL. CROSSES (DASHES) IN E-H DENOTE AREAS WHERE LESS THAN 10 % OF THE 
SIMULATED TRENDS ARE AS LARGE (SMALL) AS THE OBSERVED TREND. 
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5.4	 EVALUATION OF EXTREMES IN CLIMATE 
MODELS

Extreme events refer to weather and climate events near 
the ‘tail’ of the probability distribution. They are in general 
difficult to realistically represent in climate models. The 
2007 IPCC Fourth Assessment Report concluded that models 
showed some considerable skill in simulating the statistics 
of extreme events (especially for temperature extremes) 
given their coarse resolution (Randall et al. 2007). In a 
separate report, the IPCC has conducted an assessment 
of extreme events in the context of climate change: the 
Special Report on Managing the Risks of Extreme Events 
and Disasters to Advance Climate Change Adaptation 
(SREX) (IPCC, 2012). Although climate model evaluation with 
respect to extreme events was not done in a consistent 
manner in SREX, model performance was taken into 
account when projections uncertainty was assessed.

The evaluation of the simulation of extremes in climate 
models is important because the impacts of climate change 
will be experienced more profoundly in terms of the 
frequency, intensity or duration of extreme events (e.g. heat 
waves, droughts, extreme rainfall events).

The recently published IPCC Fifth Assessment Report 
(Working Group 1) (IPCC, 2013) summarised that the global 
distribution of temperature extremes are represented well 
by CMIP5 models. Furthermore, it reported that CMIP5 

models tend to simulate more intense and thus more 
realistic precipitation extremes than CMIP3, which could be 
partly due to generally higher horizontal resolution. Also, 
CMIP5 models are able to better simulate aspects of large-
scale drought.

Specifically for Australia, we have assessed the bias in three 
of the extreme indices from the CMIP5 model ensemble: 
annual and seasonal maximum of daily maximum 
temperature (Txx); annual and seasonal minimum of daily 
minimum temperature (Tnn) and the annual and seasonal 
maximum 1-day rainfall event (rx1day). Additionally, the 
20-year return value of these quantities has been compared 
to observed values. There are currently two global 
observation-based data sets available to assess climate 
extreme indices: the GHCNDEX (Donat et al. 2013a, Fischer 
and Knutti, 2014) and the HadEX2 (Donat et al. 2013b) data 
set, with the latter having less spatial coverage, particular 
across northern Australia.

A comparison between CMIP5 model daily maximum 
rainfall and observations is shown in Figure 5.4.1 for 
seasons and annually for two example clusters; Monsoonal 
North (MN) and Southern Slopes (SS). With less data 
coverage in tropical Australia for the HadEX2 data set, 
for the Monsoonal North we focus on how the models 
are placed compared to the GHCNDEX data points (red 
downward triangles in Figure 5.4.1). Overall the observed 
daily maximum rainfall amounts here are mostly captured 

FIGURE 5.4.1: DAILY EXTREME RAINFALL (LEFT COLUMN: FOR DAILY MAXIMUM RAINFALL PER YEAR; ((A) FOR CLUSTER MN AND (C) 
FOR CLUSTER SS): FOR DAILY MAXIMUM RAINFALL IN 20 YEARS ((B) FOR CLUSTER MN AND (D) FOR CLUSTER SS) ACROSS SEASONS 
AND ANNUALLY (UNITS ARE MM/DAY). CMIP5 MODELS ARE REPRESENTED BY THE BOX-WHISKER WHILE COLOURED SYMBOLS 
REPRESENT REANALYSIS PRODUCTS (SEE TABLE 5.2.1) AND TWO GRIDDED OBSERVATIONAL DATA PRODUCTS (SEE TEXT).
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by the Interquartile Range (middle 50 % of CMIP5 model 
simulations) of the model ensemble. This is true for both 
the maximum daily rainfall event within a year (Figure 
5.4.1a) as well as the maximum daily rainfall event over a 
20 year period (Figure 5.4.1b). For summer and averaged 
over the entire Monsoonal North cluster, the latter event 
is around 120 mm in the observations and very close to 
the ensemble median. The spread is fairly substantial 
– particular towards the lower end with some models 
showing less than half the observed rainfall during the 
maximum event.

For the Southern Slopes cluster, the CMIP5 models have 
a tendency to underestimate the maximum 1-day rainfall 
event during a year (Figure 5.4.1c), but are still within 
range. The 20-year event (Figure 5.4.1d) is somewhat better 
captured. Noteworthy is the fact that despite on average 
receiving more rainfall during winter (JJA), the maximum 
one-day rainfall events are stronger in the summer months.

Other clusters show very similar results quantitatively: 
fairly large model spread around median maximum rainfall 
values that are not too far from that observed. 

However, it should be noted that this assessment is for 
rain events averaged at large spatial scales, whereas many 
extreme rainfall events in the real world occur at a far 
smaller spatial scale. These events are included not as single 
small-scale events, but aggregated over each larger grid 
cell.

Annual and 20 year daily maximum and minimum 
temperatures show similar biases to mean temperature: 
a slight cold bias for maximum and slight warm bias for 
minimum temperatures. As with rainfall, the model spread 
is fairly large (up to 10 degrees for some seasons for both 
daily maximum and minimum temperature).

In summary, the CMIP5 models are able to capture the 
annual maximum 1-day rainfall event reasonably well. 
Additionally, they are able to simulate both annual and 
seasonal daily maximum and minimum temperatures with 
some skill. 

5.5	 EVALUATION OF DOWNSCALING 
SIMULATIONS

This Report includes regional climate change projections 
information from two downscaling methods (described 
in detail in later in Section 6.3). Therefore it is necessary 
to also provide some information about how well these 
simulations perform over the historical period.

Each of the two methods used here have important aspects 
that bring them closer to observations. For the statistical 
downscaling method, observed relationships between 
local synoptic situations and the large-scale climate are 
used to build the statistical model. This usually leads to 
a very close representation of the observed climate in 
the statistical downscaling model, (almost) independent 
of the choice of host global climate model. A set of 22 

global climate models have been used as hosts and the 
resulting statistical downscaling model simulations are 
all very similar over the historical period (1986-2005). 
For the dynamical downscaling method, the monthly sea 
surface temperature data used as input from each global 
climate model simulation are initially adjusted to match 
the observed mean climate before being used to build the 
dynamical downscaling simulation. This means the resulting 
dynamically downscaled simulations are again fairly similar 
to each other and to the observations over the historical 
period (1986-2005). Not surprisingly then, for the mean 
climate we find that all performance metrics are very high 
for temperature and rainfall, as well as for mean sea level 
pressure in the dynamical downscaling simulations (not 
shown).

We also assessed two measures of temporal variability for 
rainfall: the annual cycle (through the spatial-temporal 
root mean square error, STRMSE following Gleckler et al. 
(2008) as above) and the inter-annual variability of rainfall 
– both at cluster level. Figure 5.5.1 shows the comparison of 
the STRMSE for both ensembles across the cluster regions 
and the entire continent. Even though the dynamical 
downscaling ensemble only has 6 members (compared to 
22 for the statistical downscaling ensemble), the spread 
in performance is quite similar for both. Apart from the 
Southern Slopes (SS) and Murray Basin (MB) clusters, the 
size of the error is comparable between the two ensembles 
as well. The dynamical downscaling shows larger STRMSE 
than the statistical downscaling for SS and MB clusters. For 
all other non-tropical clusters, the median STRMSE is mostly 
below 0.5 mm/day. The larger inter-model spread is seen 
for the tropical cluster regions (Wet Tropics and Monsoonal 
North) where climatological rainfall is very high and 
seasonal differences are also very pronounced.

FIGURE 5.5.1: BOX-WHISKER PLOT OF THE SPATIAL-TEMPORAL 
ROOT MEAN SQUARE ERROR (STRMSE; LARGER VALUES 
INDICATE LARGER ERRORS COMPARED TO OBSERVATIONS) FOR 
RAINFALL FROM TWO DOWNSCALED ENSEMBLES AGAINST 
AWAP RAINFALL FOR AUSTRALIA AND THE EIGHT CLUSTER 
REGIONS. THE DOWNSCALED ENSEMBLES ARE THE BOM-SDM 
STATISTICAL DOWNSCALED ENSEMBLE (GREEN) AND THE 
CCAM DYNAMICAL DOWNSCALED ENSEMBLE (BLUE).
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The year to year variability of rainfall is an important feature 
of the climate within each of the clusters and Figure 5.5.2 
shows a comparison of the two downscaling ensembles 
against various observational data sets (including AWAP) 
for the period 1986-2005. In the observations, the inter-
annual variability is fairly modest except along the East 
Coast and over tropical Australia where the impact of 
monsoonal rainfall is strong. The statistical downscaling 
ensemble is able to capture the extra-tropical inter-annual 
rainfall variability well, whereas the dynamical downscaling 
ensemble shows especially good skill over the tropical 
clusters and the Rangeland cluster. 

It should be noted that whereas downscaling generally 
involves processes that bring the simulation of the current 
climate further in line with observations, the downscaling 
simulations inherit much of the climate change ‘signal’ 
from the host model. Therefore the set of excellent 
evaluation metrics shown above does not lead to a 
proportional increase in the confidence in the projections 
from downscaling compared to GCMs. They do however 
show that both downscaling methods achieved their aim: 
to produce higher resolution outputs with smaller biases 
than GCMs (compare 1.13 mm/day median STRMSE across 
Australia in GCMs (Figure 5.2.8) to around 0.25 mm/day in 
downscaled simulations here) that may then reveal regional 
detail in the climate change signal at finer scale than GCMs 
can (see further discussion of these points in Sections 6.3 
and 7.2).

5.6	 SYNTHESIS OF MODEL EVALUATION

Model evaluation is an important tool to help rate 
confidence in climate model simulations. This can add to 
the overall confidence assessment for future projections 
of the Australian climate. Additionally it can highlight 
significant model deficiencies that may affect the selection 
of a subset of models for use in impact assessment.

ATMOSPHERIC VARIABLES

The CMIP5 models are able to capture the broad-scale 
characteristics of the 1986-2005 average surface air 
temperature, rainfall and surface wind climatology. 
However they display some important deficiencies 
in simulating the finer details, especially for rainfall. 
Sometimes model skill can be impacted by large-scale 
biases in the models. For example in some models the 
so-called ‘cold-tongue’ bias in the central Pacific Ocean 
influences the ENSO teleconnection to Australian rainfall 
and therefore results in an additional bias in the annual 
rainfall cycle. There are also biases in the representation of 
the seasonal wind reversal across tropical Australia around 
the onset of the monsoon.

The GISS-E2 models (GISS-E2-H, GISS-E2-H-CC and GISS-
E2-R) and MIROC-ESM models (MIROC-ESM MIROC-ESM-CC) 
provide consistently poorer simulations of the average 
climate across all atmospheric variables examined. 
Additionally, IPSL-CM5A-LR shows deficient simulations for 
several fields and both NorESM1-M models are particularly 
deficient for rainfall across Australia.

REGIONS AND CLUSTERS

Some regions and clusters are more difficult to simulate 
than others (for temperature and rainfall). This is typically 
the case when (a) the region or cluster is quite small and 
therefore only a few grid cells contribute to the statistics; 
and (b) where topography and coastlines play a major role. 
For example, the skill of simulation of rainfall is acutely 
linked to surface fields such as topography, coastlines 
and land surface cover. This is one of the reasons why 
rainfall varies strongly at regional scales. Therefore higher 
resolution models can potentially better resolve these 
processes. The Wet Tropics region is a good example 
for both. Others are the Southern Slopes sub-clusters in 
Tasmania and the East Coast cluster.

For rainfall, the two models CESM1-WACCM and CMCC-
CESM show particularly poor simulations across regions 
in Australia and GISS models GISS-E2-H, GISS-E2-H-CC and 
GISS-E2-R are similarly deficient mainly over the Wet Tropics 
and Rangelands regions (Table 5.2.2). A few other models 
showing deficiencies only over some regions include BNU-
ESM (for Southern and Eastern Australia); GFDL-ESM2M (for 
Southern Australia); IPSL-CM5A-LR and IPSL-CM5B-LR (for 
Eastern Australia); and MIROC-ESM (scoring the lowest for 
the entire continent).

FIGURE 5.5.2: BOX-WHISKER PLOT OF THE TEMPORAL 
STANDARD DEVIATION OF ANNUAL RAINFALL (1986–2005) 
FROM TWO DOWNSCALED ENSEMBLES AND GRIDDED 
OBSERVATIONAL RAINFALL FOR AUSTRALIA AND THE EIGHT 
CLUSTER REGIONS. THE DOWNSCALED ENSEMBLES ARE THE 
BOM-SDM STATISTICAL DOWNSCALED ENSEMBLE (GREEN) AND 
THE CCAM DYNAMICAL DOWNSCALED ENSEMBLE (BLUE). THE 
OBSERVATIONAL DATA INCLUDES AWAP.
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CLIMATE FEATURES AND PATTERNS OF VARIABILITY

Most of the CMIP5 global climate models are able to 
reproduce the major climate features (SAM, monsoon, 
pressure systems, subtropical jet, circulation – see Table 
5.2.4 and Section 5.2.4) and modes of variability (seasonal 
cycle, ENSO, Indian Ocean Dipole). Three models (IPSL-
CM5A-MR, IPSL-CM5A-LR and CSIRO-MK3-6-0) show 
unusually low skill with respect to the ENSO-rainfall 
teleconnection. This is partly due to their bias in the 
equatorial sea surface temperatures. The following models 
do not simulate the reversal to monsoon westerlies across 
tropical Australia during the monsoon season: GISS-E2-H, 
GISS-E2-H-CC, GISS-E2-R, IPSL-CM5A-LR, IPSL-CM5A-MR, 
MIROC-ESM, INMCM4, ACCESS1-3 and MIROC-ESM-CHEM. 

RECENT OBSERVED TRENDS

There is no conclusive evidence that CMIP5 models fail to 
reproduce 1956-2005 observed trends in daily maximum 
and minimum temperature and rainfall. The extent of the 
areas where discrepancies exist are generally not larger 
than expected due to the pronounced variability on inter-
annual to decadal scales. Nevertheless, confidence in 
rainfall projections is inevitably reduced where consistency 
is low, particularly north-western Australia in summer and 
south-eastern Australia in autumn.

EXTREMES

CMIP5 models are able to capture the annual maximum 
1-day rainfall events across different clusters reasonably 
well. Additionally, they are able to simulate both annual and 
seasonal daily maximum and minimum temperatures with 
some skill.

DOWNSCALING SIMULATIONS

Because of the inherent nature of the downscaling methods 
applied here, the rainfall and temperature climatology 
is simulated very well. Some differences between the 
statistical and dynamical method are seen when evaluating 
climate variability, with the dynamical scheme showing 
better ability to simulate higher inter-annual variability (in 
the tropics) while the statistical scheme shows better ability 
across the southern half of Australia.

CMIP5 MODEL RELIABILITY AND IMPLICATION FOR 
PROJECTIONS

Despite some models performing poorly across multiple 
evaluation metrics, the approach adopted for generating 
climate change projections for Australia has been to 
equally weight all participating CMIP5 models. As will be 
seen in Section 6.2, in forming ranges of projected change 
using CMIP5, factoring in model performance (by different  
methods weighting or model elimination) does not have 
a strong affect, and is not done routinely in the ranges of 
projected change presented in Chapter 7 (although there 
are some exceptions noted in that chapter). Nevertheless 

the model performance results are used in two other 
important ways. First, they are considered in formulating 
the confidence rating that is attached to the CMIP5 
projections (see Section 6.4 and Chapter 7). Secondly, poor 
performing models are flagged in the Climate Futures tool 
(Chapter 9), to guard against these models being selected 
when forming a small set of models for use in impact 
assessment.

From the results of the analysis presented in the individual 
sections of this chapter, the following models were 
identified as poor performing models, for the reasons 
outlined (see also Table 5.6.1). All of these models should be 
used with caution in any projection work in regions or for 
variables, where the noted model deficiencies are likely to 
be particularly relevant. The models are: 

•	 MIROC-ESM and MIROC-ESM-CHEM don’t simulate 
temperature and rainfall over Australia well. They 
also do not produce monsoon westerlies during the 
monsoon season and therefore show deficient wet 
season rainfall (spatial distribution). Both models score 
low on the simple MJO skill (propagating convection 
into tropical region). MIROC-ESM additionally shows 
deficient ENSO-rainfall teleconnection for Australia.

•	 GISS-E2H, GISS-E2H-CC and GISS-E2R show low scores 
for temperature and rainfall across Australia. They also 
simulate low scores averaged across various climate 
features and don’t produce monsoon westerlies during 
the wet season over tropical Australia. Two of the 
three GISS models do not show a correlation between 
blocking and rainfall over Australia.

•	 IPSL-CM5A-MR and IPSL-CM5A-LR show unusually low 
skill with respect to the ENSO-rainfall teleconnection 
over Australia. These two IPSL models also have 
deficient simulation of larger circulation (no monsoon 
westerlies) and propagating convection (low MJO 
related skill) across tropical Australia.

•	 CESM1-WACCM and BNU-ESM are equally low in 
skill for temperature and rainfall simulations across 
Australia and averaged over nine climate features 
important for Australia. Additionally, CESM1-WACCM 
shows deficiencies in simulating the annual cycle of 
rainfall while BNU-ESM has lower skill in the spatial 
representation of wet season rainfall.

•	 Similar to the IPSL models mentioned above, the 
INMCM4 model has low skill in representing the ENSO-
rainfall relationship for Australia and does not produce 
monsoon westerlies during the wet season over tropical 
Australia. Additionally, there is low MJO related skill. 

•	 GFDL-ESM-2G has low skill in representing the ENSO-
rainfall relationship for Australia and does not show a 
correlation between blocking and rainfall over Australia. 
Additionally, there is low MJO related skill.
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TABLE 5.6.1: SUMMARY OF MODELS SCORING LOW ON VARIOUS SKILL METRICS USED THROUGHOUT THE MODEL EVALUATION 
PROCESS. FOR EACH EVALUATION THE LOWEST 6-8 MODELS ARE INCLUDED. THE COLUMN ON THE RIGHT GIVES THE OVERALL SUM 
OF HOW OFTEN A MODEL FELL INTO THE LOWER GROUP.
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ACCESS1-0 X 1

ACCESS1-3 X X 2

BNU-ESM X X X 3

CanCM4 X 1

CanESM2 X 1

CCSM4 X 1

CESM1-BGC X 1

CESM1-WACCM X X X 3

CMCC-CESM X 1

CMCC-CMS X 1

CSIRO-Mk3-6-0 X X 2

GFDL-CM3 X 1

GFDL-ESM2G X X X 3

GISS-E2-H X X X X 4

GISS-E2-H-CC X X X 3

GISS-E2-R X X X 3

HadCM3 X X 2

HadGEM2-ES X 1

INMCM4 X X X 3

IPSL-CM5A-LR X X X 3

IPSL-CM5A-MR X X X 3

IPSL-CM5B-LR X 1

MIROC-ESM X X X X X 5

MIROC-ESM-CHEM X X X X 4

MPI-ESM-LR X 1

MPI-ESM-MR X 1

MPI-ESM-P X 1

MRI-CGCM3 X 1

NorESM1-M X 1

NorESM1-ME X 1
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