Climate Change in Australia
Climate information, projections, tools and data
Certain applications need more than general information about projected changes in the climate. These applications require projections as input to further analyses or modelling to explore the impact of particular scenarios in detail. This requires application-ready, locally-relevant future climate data:
The choice to use application-ready data and the method to produce it are part of a wider set of choices in using climate projections . In making these choices, it is important to have an overall clear perspective on projections and the sources of uncertainty and confidence . The Decision Tree can help you make the right choice and guide you to the right pages on this site. If detailed datasets are needed, the Regional projections data pathway can be used.
Global climate model (GCM) outputs can’t be used directly in applied analyses that require calibration to local observations. This is because GCMs have a coarse spatial scale and contain some difference to observations, or ‘bias’. Some bias is expected and does not mean that the projected changes are unreliable (for more detail, see Modelling and projections ).
There are a range of methods for producing appropriate datasets, in two main categories, as described in the table below.
Category |
Options |
Advantages |
Disadvantages |
Access |
---|---|---|---|---|
Scaling: modifying observed data by applying projected change quantities |
Mean scaling, quantile-quantile scaling, other complex methods |
Simple, produces data very consistent with observations, possible to use many inputs to cover a range of uncertainty |
Only expresses the change that is scaled (e.g. mean scaling only shows a change in the mean, not a change to variability) |
Data scaled by changes from global climate models are available on the CCiA site, see below |
Bias correction: altering the raw output of models so it matches local observations |
Empirical, distribution fit and many others |
Can express the full suite of changes from model run (mean, variability, timing etc.) |
Complex, may not remove all biases, can only correct relatively small local biases, may result in loss of internal consistency among variables |
Bias-corrected outputs from downscaled regional studies are available from two studies in Australia: NARCLIM and CFT (see Projections Landscape ) |
The approach for creating the application-ready data available from Climate Change in Australia is summarised in the table below (a more detailed description of the variables can be found on the Data Availability page).
Depending on the variable and time-scale, mean scaling or quantile-quantile scaling was applied to 30-year observed time-series datasets, centred on 1995 (1981–2010) to produce time-series data for the future periods 2016-2045, 2036-2065, 2056-2085 and 2075-2104. In all cases, the changes applied were calculated using the baseline period 1986-2005. No transient change has been used so the future time-series data can be regarded as representative of the mean state of the future climate. This makes these datasets ideal for deriving daily statistics for the future climate. For example, the Thresholds Calculator uses the application-ready datasets to derive data on the average number of days per year above or below particular temperature and rainfall thresholds.
Data are provided for all variables for which appropriate observed climate data were available to scale; and were of sufficient quality and duration. The observed data come from a variety of sources, sometimes in gridded format and sometimes for sites (see the table below and the Data Delivery brochure ).
The best choice of method depends on the field of research, the relevant aspects of climate change to the research question and the type of applied model that is used. Examples of choosing an overall approach, including the method of producing application-ready datasets may help. We have produced three case studies covering a range of sectors:
Case study: Human health (heat)
Dataset |
Scaling Method |
Observed Data Used |
Access |
|
---|---|---|---|---|
Mean temperature |
Gridded (0.05°1) daily, monthly & seasonal time-series |
Mean |
AWAP2 daily or monthly time-series |
Download from Download Datasets page |
Point location daily, monthly & seasonal time-series |
Mean |
BoM HQ Station Network3 daily, monthly or seasonal time-series |
Download from Download Datasets page |
|
Point location monthly, seasonal & annual averages |
Mean |
BoM HQ Station Network3 monthly, seasonal or annual time-series |
Download as spreadsheets from links on Download Datasets page |
|
Gridded (0.05°1) seasonal & annual averages |
Mean |
AWAP2 seasonal or annual time-series |
Map Explorer (view only) |
|
Maximum temperature |
Gridded (0.05°1) daily, monthly & seasonal time-series |
Mean |
AWAP2 daily or monthly time-series |
Download from Download Datasets page |
Point location daily, monthly & seasonal time-series |
Mean |
BoM HQ Station Network3 daily, monthly or seasonal time-series |
Download from Download Datasets page |
|
Point location monthly, seasonal & annual averages |
Mean |
BoM HQ Station Network3 monthly, seasonal or annual time-series |
Download as spreadsheets from links on Download Datasets page |
|
Gridded (0.05°1) seasonal & annual averages |
Mean |
AWAP2 seasonal or annual time-series |
Map Explorer (view only) |
|
Minimum temperature |
Gridded (0.05°1) daily, monthly & seasonal time-series |
Mean |
AWAP2 daily or monthly time-series |
Download from Download Datasets page |
Point location daily, monthly & seasonal time-series |
Mean |
BoM HQ Station Network3 daily, monthly or seasonal time-series |
Download from Download Datasets page |
|
Point location monthly, seasonal & annual averages |
Mean |
BoM HQ Station Network3 monthly, seasonal or annual time-series |
Download as spreadsheets from links on Download from Download Datasets page page |
|
Gridded (0.05°1) seasonal & annual averages |
Mean |
AWAP2 seasonal or annual time-series |
Map Explorer (view only) |
|
Rainfall |
Gridded (0.05°1) daily time-series |
Quantile-quantile |
AWAP2 daily time-series |
Download from Download Datasets page |
Gridded (0.05°1) monthly & seasonal time-series |
Mean |
AWAP2 monthly or seasonal time-series |
Download from Download Datasets page |
|
Point location daily time-series |
Quantile-quantile |
BoM HQ Station Network3 daily time-series |
Download from Download Datasets page |
|
Point location monthly & seasonal time-series |
Mean |
BoM HQ Station Network3 monthly or seasonal time-series |
Download from Download Datasets page |
|
Gridded (0.05°1) seasonal & annual averages |
Mean |
AWAP2 seasonal or annual time-series |
Map Explorer (view only) |
|
Relative humidity |
Gridded (0.05°1) daily, monthly & seasonal time-series |
Mean |
ERA-Interim4 daily, monthly or seasonal time-series |
Download from Download Datasets page |
Gridded (0.05°1) seasonal & annual averages |
Mean |
ERA-Interim4 seasonal or annual time-series |
Map Explorer (view only) |
|
9am & 3pm relative humidity |
Point location daily, monthly & seasonal time-series |
Mean |
BoM HQ Station Network3 daily, monthly or seasonal time-series |
Download from Download Datasets page |
Point location monthly, seasonal & annual averages |
Mean |
BoM HQ Station Network3 monthly, seasonal or annual time-series |
Download as spreadsheets from links on Download from Download Datasets page page |
|
Solar radiation |
Gridded (0.05°1) daily, monthly & seasonal time-series |
Mean |
ERA-Interim4 daily, monthly or seasonal time-series |
Download from Download Datasets page |
Gridded (0.05°1) seasonal & annual averages |
Mean |
ERA-Interim4 seasonal or annual time-series |
Map Explorer (view only) |
|
Wind speed (NB. no daily data available) |
Gridded (0.05°1) monthly & seasonal time-series |
Mean |
ERA-Interim4 monthly or seasonal time-series |
Download from Download Datasets page |
Gridded (0.05°1) seasonal & annual averages |
Mean |
ERA-Interim4 seasonal or annual time-series |
Map Explorer (view only) |
|
Evapotranspiration |
Gridded (0.05°1) daily, monthly & seasonal time-series |
Mean |
CLW5 daily, monthly or seasonal time-series |
Download from Download Datasets page |
Gridded (0.05°1) seasonal & annual averages |
Mean |
CLW5 seasonal or annual time-series |
Map Explorer (view only) |
|
Pan evaporation |
Point location daily, monthly & seasonal time-series |
Mean |
BoM HQ Station Network3 daily, monthly or seasonal time-series |
Download from Download Datasets page |
Point location monthly, seasonal & annual averages |
Mean |
BoM HQ Station Network3 monthly, seasonal or annual time-series |
Download as spreadsheets from links on Download from Download Datasets page page |
It is important to note that the fine spatial and temporal details in application-ready data are derived from the observed datasets, not the climate models. For example, the AWAP observed temperature and rainfall data are available on a 5 km (approx.) grid, while the projected changes from the global climate models used here have resolutions ranging from 100-310 km (more detail on the GCMs used). When combining the observed and model data, the model data are first interpolated to a 5 km grid (which does not alter the climate change patterns) then applied to the observed data. Hence, the application-ready data are simply modified observed data. A detailed description of the scaling methods used is provided here .
Application-ready data can be made available for averages and time-series over a range of spatial scales. Spatial detail ranges from Cluster-average, to a 5 km grid-average, to specific cities and towns (limited to sites with high-quality baseline data). Changes are based on a subset of eight CMIP5 climate models that simulate most of the range of changes in seasonal-mean temperature and rainfall over most of Australia (Technical Report Chapter 5 Box 9.2), plus downscaling where appropriate. This subset reduces the effort required for data management, while still sampling most of the range of uncertainty from the full set of 40 climate models.
Page last updated 15th August 2023